Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10494, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714660

RESUMEN

Binocular visual plasticity can be initiated via either bottom-up or top-down mechanisms, but it is unknown if these two forms of adult plasticity can be independently combined. In seven participants with normal binocular vision, sensory eye dominance was assessed using a binocular rivalry task, before and after a period of monocular deprivation and with and without selective attention directed towards one eye. On each trial, participants reported the dominant monocular target and the inter-ocular contrast difference between the stimuli was systematically altered to obtain estimates of ocular dominance. We found that both monocular light- and pattern-deprivation shifted dominance in favour of the deprived eye. However, this shift was completely counteracted if the non-deprived eye's stimulus was selectively attended. These results reveal that shifts in ocular dominance, driven by bottom-up and top-down selection, appear to act independently to regulate the relative contrast gain between the two eyes.


Asunto(s)
Predominio Ocular , Visión Binocular , Humanos , Visión Binocular/fisiología , Predominio Ocular/fisiología , Adulto , Masculino , Femenino , Adulto Joven , Plasticidad Neuronal/fisiología , Estimulación Luminosa , Visión Monocular/fisiología , Percepción Visual/fisiología , Atención/fisiología
2.
Behav Res Methods ; 56(1): 406-416, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36690890

RESUMEN

Many behavioural phenomena have been replicated using web-based experiments, but evaluation of the agreement between objective measures of web- and lab-based performance is required if scientists and clinicians are to reap the benefits of web-based testing. In this study, we investigated the reliability of a task which assesses early visual cortical function by evaluating the well-known 'oblique effect' (we are better at seeing horizontal and vertical edges than tilted ones) and the levels of agreement between remote, web-based measures and lab-based measures. Sixty-nine young participants (mean age, 21.8 years) performed temporal and spatial versions of a web-based, two-alternative forced choice (2AFC) orientation-identification task. In each case, orientation-identification thresholds (the minimum orientation difference at which a standard orientation could be reliably distinguished from a rotated comparison) were measured for cardinal (horizontal and vertical) and oblique orientations. Reliability was assessed in a subsample of 18 participants who performed the same tasks under laboratory conditions. Robust oblique effects were found, such that thresholds were substantially lower for cardinal orientations compared to obliques, for both web- and lab-based measures of the temporal and spatial 2AFC tasks. Crucially, web- and lab-based orientation-identification thresholds showed high levels of agreement, demonstrating the suitability of web-based testing for assessments of early visual cortical function. Future studies should assess the reliability of similar web-based tasks in clinical populations to evaluate their adoption into clinical settings, either to screen for visual anomalies or to assess changes in performance associated with progression of disease severity.


Asunto(s)
Internet , Orientación , Humanos , Adulto Joven , Adulto , Reproducibilidad de los Resultados
3.
Vision Res ; 188: 10-25, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34280813

RESUMEN

Brief periods of monocular deprivation significantly modify binocular visual processing. For example, patching one eye for a few hours alters the inter-ocular balance, with the previously patched eye becoming dominant once the patch is removed. However, the contribution of higher-level visual processing to this phenomenon is still unclear. Here, we compared changes in sensory eye dominance produced by three types of monocular manipulations in adult participants with normal binocular vision. One eye was covered for 150 min using either an opaque patch, a diffusing lens, or a prism that inverted the image. All three manipulations altered dominance duration and predominance during binocular rivalry (BR) in favour of the treated eye and the time courses of the changes were similar. These results indicate that modifications of luminance or contrast are not strictly necessary to drive shifts in eye dominance, as both were unaltered in the prism condition. Next, we found that shifts in eye dominance were dependent on attentional demands during the monocular treatment period, providing support for the role of attentional eye selection in modulating eye dominance. Finally, we found relatively rapid build-up of the ocular dominance shift after the onset of monocular treatment. Taken together, our results suggest that modifications to monocular input alter inter-ocular balance via selective attentional mechanisms that bias output towards the deprived eye. Eye-based attention may play an important role in conditions where normal input to one eye is disrupted, such as childhood amblyopia.


Asunto(s)
Predominio Ocular , Visión Binocular , Adulto , Atención , Niño , Humanos , Estimulación Luminosa , Privación Sensorial , Visión Monocular , Percepción Visual
4.
Vision Res ; 173: 29-40, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32460171

RESUMEN

The adult visual system was traditionally thought to be relatively hard-wired, but recent studies have challenged this view by demonstrating plasticity following short-term monocular deprivation. Depriving one eye of spatial information for 2-3 h increased subsequent sensory dominance of that eye. However, the mechanism underlying this phenomenon is unclear. The present study sought to address this issue and determine the consequences of short-term monocular deprivation on inter-ocular suppression of each eye. Sensory eye dominance was examined before and after depriving an eye of all input using an opaque patch for 2.5 h, in six adult participants with normal binocular vision. We used a percept tracking task during binocular rivalry (BR) to assess the relative eye dominance, and an objective probe detection task under continuous flash suppression (CFS) to quantify each eye's susceptibility to inter-ocular suppression. The monocular contrast increment threshold of each eye was also measured using the probe task to ascertain if the altered eye dominance is accompanied by changes in monocular perception. Our BR results replicated previous findings of a shift of relative dominance towards the eye that has been deprived of form information. More crucially, using CFS we demonstrated reduced inter-ocular suppression of the deprived eye with no complementary changes in the other eye, and no monocular changes in increment threshold. These findings imply that short-term monocular deprivation alters binocular interactions. The differential effect on inter-ocular suppression between eyes may have important implications for the use of patching as a therapy to recover visual function in amblyopia.


Asunto(s)
Predominio Ocular/fisiología , Privación Sensorial , Disparidad Visual/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa , Adulto Joven
5.
Vision Res ; 163: 33-41, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31374237

RESUMEN

The competitive and inhibitory interactions between the two eyes' images are a pervasive aspect of binocular vision. Over the last decade, our understanding of the neural processes underpinning binocular rivalry (BR) and continuous flash suppression (CFS) has increased substantially, but we still have little understanding of the relationship between these two effects and their variation in the general population. Studies that pool data across individuals and eyes risk masking substantial variations in binocular vision that exist in the general population. To investigate this issue we compared the depth of inter-ocular suppression evoked by BR with that elicited by CFS, in a group (N = 25) of visually normal individuals. A noise pattern (either static for BR or dynamic for CFS) was presented to one eye and its suppressive influence on a probe grating presented simultaneously to the other eye was measured. We found substantial individual differences in the magnitude of suppression (a 10-fold variation in probe detection threshold) evoked by each task, but performance on BR was a significant predictor of performance on the CFS task. However many individuals showed marked asymmetries between the two eyes' ability to detect a suppressed target, that were not necessarily the same for the two tasks. There was a tendency for the magnitude of the asymmetry to increase as the refresh rate of the dynamic noise increased. The results suggest a common underlying mechanism is likely to be responsible, at least in part, for driving inter-ocular suppression under BR and CFS. The marked asymmetries in inter-ocular suppression at higher noise refresh rates, may be indicative of a difference in temporal processing between the eyes.


Asunto(s)
Predominio Ocular/fisiología , Disparidad Visual/fisiología , Visión Binocular/fisiología , Adulto , Femenino , Humanos , Individualidad , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Visión Ocular/fisiología , Percepción Visual/fisiología , Adulto Joven
6.
Invest Ophthalmol Vis Sci ; 59(13): 5462-5472, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452600

RESUMEN

Purpose: Suppression in amblyopia may be an unequal form of normal interocular suppression or a distinct pathophysiology. To explore this issue, we examined the orientation tuning and contrast dependence of continuous flash suppression (CFS) in adults with amblyopia and visually normal controls. Methods: Nine patients (mean age, 26.9 ± SD 4.7 years) and 11 controls (mean age, 24.8 ± SD 5.3 years) participated. In the CFS paradigm, spatially one-dimensional noise refreshing at 10 Hz was displayed in one eye to induce suppression of the other eye, and suppression strength was measured by using a grating contrast increment detection task. In experiment 1, noise contrast was fixed and the orientation difference between the noise and the grating was varied. In experiment 2, noise and grating orientations were identical and noise contrast was varied. Results: Suppression patterns varied in both groups. In experiment 1, controls showed consistently orientation-tuned CFS (mean half-height bandwidth, 35.8° ± SD 21.5°) with near-equal strength between eyes. Five of nine patients with amblyopia exhibited orientation-independent CFS. Eight patients had markedly unequal suppression between eyes. Experiment 2 found that increasing the noise contrast to the amblyopic eye may produce suppression of the fellow eye, but suppression remained unequal between eyes. Conclusions: Our data revealed that orientation specificity in CFS was very broad or absent in some patients with amblyopia, which could not be predicted by clinical measures. Suppression was unbalanced across the entire contrast range for most patients. This suggests that abnormal early visual experience disrupts the development of interocular suppression mechanisms.


Asunto(s)
Ambliopía/fisiopatología , Sensibilidad de Contraste/fisiología , Adulto , Predominio Ocular/fisiología , Femenino , Humanos , Masculino , Orientación , Estimulación Luminosa , Umbral Sensorial/fisiología , Estrabismo/fisiopatología , Visión Binocular/fisiología , Adulto Joven
7.
J Vis ; 18(4): 5, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29614154

RESUMEN

Transparency perception often occurs when objects within the visual scene partially occlude each other or move at the same time, at different velocities across the same spatial region. Although transparent motion perception has been extensively studied, we still do not understand how the distribution of velocities within a visual scene contribute to transparent perception. Here we use a novel psychophysical procedure to characterize the distribution of velocities in a scene that give rise to transparent motion perception. To prevent participants from adopting a subjective decision criterion when discriminating transparent motion, we used an "odd-one-out," three-alternative forced-choice procedure. Two intervals contained the standard-a random-dot-kinematogram with dot speeds or directions sampled from a uniform distribution. The other interval contained the comparison-speeds or directions sampled from a distribution with the same range as the standard, but with a notch of different widths removed. Our results suggest that transparent motion perception is driven primarily by relatively slow speeds, and does not emerge when only very fast speeds are present within a visual scene. Transparent perception of moving surfaces is modulated by stimulus-based characteristics, such as the separation between the means of the overlapping distributions or the range of speeds presented within an image. Our work illustrates the utility of using objective, forced-choice methods to reveal the mechanisms underlying motion transparency perception.


Asunto(s)
Percepción de Movimiento/fisiología , Percepción Visual/fisiología , Femenino , Humanos , Masculino , Movimiento (Física) , Estimulación Luminosa/métodos , Psicofísica
8.
Neurosci Biobehav Rev ; 83: 32-45, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965963

RESUMEN

A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research.


Asunto(s)
Percepción de Movimiento/fisiología , Trastornos del Neurodesarrollo/fisiopatología , Trastornos de la Visión/etiología , Visión Ocular/fisiología , Humanos
9.
Sci Rep ; 7(1): 6593, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747794

RESUMEN

Readers with dyslexia are purported to have a selective visual impairment but the underlying nature of the deficit remains elusive. Here, we used a combination of behavioural psychophysics and biologically-motivated computational modeling to investigate if this deficit extends to object segmentation, a process implicated in visual word form recognition. Thirty-eight adults with a wide range of reading abilities were shown random-dot displays spatially divided into horizontal segments. Adjacent segments contained either local motion signals in opposing directions or analogous static form cues depicting orthogonal orientations. Participants had to discriminate these segmented patterns from stimuli containing identical motion or form cues that were spatially intermingled. Results showed participants were unable to perform the motion or form task reliably when segment size was smaller than a spatial resolution (acuity) limit that was independent of reading skill. Coherence thresholds decreased as segment size increased, but for the motion task the rate of improvement was shallower for readers with dyslexia and the segment size where performance became asymptotic was larger. This suggests that segmentation is impaired in readers with dyslexia but only on tasks containing motion information. We interpret these findings within a novel framework in which the mechanisms underlying scale selection are impaired in developmental dyslexia.


Asunto(s)
Dislexia/patología , Percepción Visual , Adulto , Femenino , Humanos , Masculino , Trastornos de la Percepción , Adulto Joven
10.
J Vis ; 17(5): 1, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460376

RESUMEN

A characteristic set of eye movements and fixations are made during reading, so the position of words on the retinae is constantly being updated. Effective decoding of print requires this temporal stream of visual information to be segmented or parsed into its constituent units (e.g., letters or words). Poor readers' difficulties with word recognition could arise at the point of segmenting time-varying visual information, but the mechanisms underlying this process are little understood. Here, we used random-dot displays to explore the effects of reading ability on temporal segmentation. Thirty-eight adult readers viewed test stimuli that were temporally segmented by constraining either local motions or analogous form cues to oscillate back and fourth at each of a range of rates. Participants had to discriminate these segmented patterns from comparison stimuli containing the same motion and form cues but these were temporally intermingled. Results showed that the motion and form tasks could not be performed reliably when segment duration was shorter than a temporal resolution (acuity) limit. The acuity limits for both tasks were significantly and negatively correlated with reading scores. Importantly, the minimum segment duration needed to detect the temporally segmented stimuli was longer in relatively poor readers than relatively good readers. This demonstrates that adult poor readers have difficulty segmenting temporally changing visual input particularly at short segment durations. These results are consistent with evidence suggesting that precise encoding of rapid time-varying information is impaired in developmental dyslexia.


Asunto(s)
Dislexia/fisiopatología , Movimientos Oculares/fisiología , Fijación Ocular/fisiología , Procesos Mentales/fisiología , Lectura , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
11.
PLoS One ; 12(2): e0172493, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28231303

RESUMEN

Databases containing lexical properties on any given orthography are crucial for psycholinguistic research. In the last ten years, a number of lexical databases have been developed for Greek. However, these lack important part-of-speech information. Furthermore, the need for alternative procedures for calculating syllabic measurements and stress information, as well as combination of several metrics to investigate linguistic properties of the Greek language are highlighted. To address these issues, we present a new extensive lexical database of Modern Greek (GreekLex 2) with part-of-speech information for each word and accurate syllabification and orthographic information predictive of stress, as well as several measurements of word similarity and phonetic information. The addition of detailed statistical information about Greek part-of-speech, syllabification, and stress neighbourhood allowed novel analyses of stress distribution within different grammatical categories and syllabic lengths to be carried out. Results showed that the statistical preponderance of stress position on the pre-final syllable that is reported for Greek language is dependent upon grammatical category. Additionally, analyses showed that a proportion higher than 90% of the tokens in the database would be stressed correctly solely by relying on stress neighbourhood information. The database and the scripts for orthographic and phonological syllabification as well as phonetic transcription are available at http://www.psychology.nottingham.ac.uk/greeklex/.


Asunto(s)
Lenguaje , Psicolingüística/métodos , Bases de Datos Factuales , Grecia , Humanos , Fonética , Habla , Vocabulario
12.
J Neurosci ; 36(49): 12328-12337, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927953

RESUMEN

A fundamental task of the visual system is to extract figure-ground boundaries between objects, which are often defined, not only by differences in luminance, but also by "second-order" contrast or texture differences. Responses of cortical neurons to both first- and second-order patterns have been studied extensively, but only for responses to either type of stimulus in isolation. Here, we examined responses of visual cortex neurons to the spatial relationship between superimposed periodic luminance modulation (LM) and contrast modulation (CM) stimuli, the contrasts of which were adjusted to give equated responses when presented alone. Extracellular single-unit recordings were made in area 18 of the cat, the neurons of which show responses to CM and LM stimuli very similar to those in primate area V2 (Li et al., 2014). Most neurons showed a significant dependence on the relative phase of the combined LM and CM patterns, with a clear overall optimal response when they were approximately phase aligned. The degree of this phase preference, and the contributions of suppressive and/or facilitatory interactions, varied considerably from one neuron to another. Such phase-dependent and phase-invariant responses were evident in both simple- and complex-type cells. These results place important constraints on any future model of the underlying neural circuitry for second-order responses. The diversity in the degree of phase dependence between LM and CM stimuli that we observed could help to disambiguate different kinds of boundaries in natural scenes. SIGNIFICANCE STATEMENT: Many visual cortex neurons exhibit orientation-selective responses to boundaries defined by differences either in luminance or in texture contrast. Previous studies have examined responses to either type of boundary in isolation, but here we measured systematically responses of cortical neurons to the spatial relationship between superimposed periodic luminance-modulated (LM) and contrast-modulated (CM) stimuli with contrasts adjusted to give equated responses. We demonstrate that neuronal responses to these compound stimuli are highly dependent on the relative phase between the LM and CM components. Diversity in the degree of such phase dependence could help to disambiguate different kinds of boundaries in natural scenes, for example, those arising from surface reflectance changes or from illumination gradients such as shading or shadows.


Asunto(s)
Estimulación Luminosa , Corteza Visual/fisiología , Animales , Gatos , Sensibilidad de Contraste , Señales (Psicología) , Femenino , Masculino , Neuronas , Corteza Visual/citología
13.
Brain Cogn ; 108: 20-31, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27429095

RESUMEN

Individuals with dyslexia are purported to have a selective dorsal stream impairment that manifests as a deficit in perceiving visual global motion relative to global form. However, the underlying nature of the visual deficit in readers with dyslexia remains unclear. It may be indicative of a difficulty with motion detection, temporal processing, or any task that necessitates integration of local visual information across multiple dimensions (i.e. both across space and over time). To disentangle these possibilities we administered four diagnostic global motion and global form tasks to a large sample of adult readers (N=106) to characterise their perceptual abilities. Two sets of analyses were conducted. First, to investigate if general reading ability is associated with performance on the visual tasks across the entire sample, a composite reading score was calculated and entered into a series of continuous regression analyses. Next, to investigate if the performance of readers with dyslexia differs from that of good readers on the visual tasks we identified a group of forty-three individuals for whom phonological decoding was specifically impaired, consistent with the dyslexic profile, and compared their performance with that of good readers who did not exhibit a phonemic deficit. Both analyses yielded a similar pattern of results. Consistent with previous research, coherence thresholds of poor readers were elevated on a random-dot global motion task and a spatially one-dimensional (1-D) global motion task, but no difference was found on a static global form task. However, our results extend those of previous studies by demonstrating that poor readers exhibited impaired performance on a temporally-defined global form task, a finding that is difficult to reconcile with the dorsal stream vulnerability hypothesis. This suggests that the visual deficit in developmental dyslexia does not reflect an impairment detecting motion per se. It is better characterised as a difficulty processing temporal information, which is exacerbated when local visual cues have to be integrated across multiple (>2) dimensions.


Asunto(s)
Dislexia/fisiopatología , Percepción de Movimiento/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
14.
Proc Biol Sci ; 283(1833)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27335413

RESUMEN

Visual perception is strongly influenced by contextual information. A good example is reference repulsion, where subjective reports about the direction of motion of a stimulus are significantly biased by the presence of an explicit reference. These perceptual biases could arise early, during sensory encoding, or alternatively, they may reflect decision-related processes occurring relatively late in the task sequence. To separate these two competing possibilities, we asked (human) subjects to perform a fine motion-discrimination task and then estimate the direction of motion in the presence or absence of an oriented reference line. When subjects performed the discrimination task with the reference, but subsequently estimated motion direction in its absence, direction estimates were unbiased. However, when subjects viewed the same stimuli but performed the estimation task only, with the orientation of the reference line jittered on every trial, the directions estimated by subjects were biased and yoked to the orientation of the shifted reference line. These results show that judgements made relative to a reference are subject to late, decision-related biases A model in which information about motion is integrated with that of an explicit reference cue, resulting in a late, decision-related re-weighting of the sensory representation, can account for these results.


Asunto(s)
Juicio , Percepción de Movimiento , Percepción Visual , Adulto , Femenino , Humanos , Masculino , Orientación , Psicofísica , Adulto Joven
16.
PLoS One ; 8(9): e72888, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058447

RESUMEN

To study prelexical processes involved in visual word recognition a task is needed that only operates at the level of abstract letter identities. The masked priming same-different task has been purported to do this, as the same pattern of priming is shown for words and nonwords. However, studies using this task have consistently found a processing advantage for words over nonwords, indicating a lexicality effect. We investigated the locus of this word advantage. Experiment 1 used conventional visually-presented reference stimuli to test previous accounts of the lexicality effect. Results rule out the use of different strategies, or strength of representations, for words and nonwords. No interaction was shown between prime type and word type, but a consistent word advantage was found. Experiment 2 used novel auditorally-presented reference stimuli to restrict nonword matching to the sublexical level. This abolished scrambled priming for nonwords, but not words. Overall this suggests the processing advantage for words over nonwords results from activation of whole-word, lexical representations. Furthermore, the number of shared open-bigrams between primes and targets could account for scrambled priming effects. These results have important implications for models of orthographic processing and studies that have used this task to investigate prelexical processes.


Asunto(s)
Toma de Decisiones/fisiología , Reconocimiento Visual de Modelos/fisiología , Enmascaramiento Perceptual/fisiología , Lectura , Femenino , Humanos , Lenguaje , Masculino , Fonética , Estimulación Luminosa , Tiempo de Reacción/fisiología , Semántica , Análisis y Desempeño de Tareas , Vocabulario , Adulto Joven
17.
Behav Brain Sci ; 35(5): 300-1, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22929657

RESUMEN

We agree with many of the principles proposed by Frost but highlight crucial caveats and report research findings that challenge several assertions made in the target article. We discuss the roles that visual processing, development, and bilingualism play in visual word recognition and reading. These are overlooked in all current models, but are fundamental to any universal model of reading.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Lectura , Reconocimiento en Psicología/fisiología , Semántica , Humanos
18.
Vision Res ; 68: 28-39, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22819730

RESUMEN

The intention of this series of experiments was to determine the extent to which the pathways sensitive to first-order and second-order motion are independent of one another at, and above, the level of global motion integration. We used translational, radial and rotational motion stimuli containing luminance-modulated dots, contrast-modulated dots, or a mixture of both. Our results show that the two classes of motion stimuli interact perceptually in a global motion coherence task, and the extent of this interaction is governed by whether the two varieties of local motion signal produce an equivalent response in the pathways that encode each type of motion. This provides strong psychophysical evidence that global motion and optic flow processing are cue-invariant. The fidelity of the first-order motion signal was moderated by either reducing the luminance of the dots or by increasing the displacement of the dots on each positional update. The experiments were carried out with two different types of second-order elements (contrast-modulated dots and flicker-modulated dots) and the results were comparable, suggesting that these findings are generalisable to a variety of second-order stimuli. In addition, the interaction between the two different types of second-order stimuli was investigated and we found that the relative modulation depth was also crucial to whether the two populations interacted. We conclude that the relative output of local motion sensors sensitive to either first-order or second-order motion dictates their weight in subsequent cue-invariant global motion computations.


Asunto(s)
Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Vías Visuales/fisiología , Sensibilidad de Contraste , Discriminación en Psicología/fisiología , Humanos , Iluminación , Psicofísica , Umbral Sensorial
19.
J Neurosci ; 31(13): 4917-25, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21451030

RESUMEN

The brain estimates visual motion by decoding the responses of populations of neurons. Extracting unbiased motion estimates from early visual cortical neurons is challenging because each neuron contributes an ambiguous (local) representation of the visual environment and inherently variable neural response. To mitigate these sources of noise, the brain can pool across large populations of neurons, pool the response of each neuron over time, or a combination of the two. Recent psychophysical and physiological work points to a flexible motion pooling system that arrives at different computational solutions over time and for different stimuli. Here we ask whether a single, likelihood-based computation can accommodate the flexible nature of spatiotemporal motion pooling in humans. We examined the contribution of different computations to human observers' performance on two global visual motion discriminations tasks, one requiring the combination of motion directions over time and another requiring their combination in different relative proportions over space and time. Observers' perceived direction of global motion was accurately predicted by a vector average readout of direction signals accumulated over time and a maximum likelihood readout of direction signals combined over space, consistent with the notion of a flexible motion pooling system that uses different computations over space and time. Additional simulations of observers' performance with a population decoding model revealed a more parsimonious solution: flexible spatiotemporal pooling could be accommodated by a single computation that optimally pools motion signals across a population of neurons that accumulate local motion signals on their receptive fields at a fixed rate over time.


Asunto(s)
Modelos Neurológicos , Percepción de Movimiento/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Transducción de Señal/fisiología , Corteza Visual/fisiología , Femenino , Humanos , Masculino , Factores de Tiempo
20.
Vision Res ; 50(17): 1766-74, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20570691

RESUMEN

This study assessed spatial summation of first-order (luminance-defined) and second-order (contrast-defined) motion. Thresholds were measured for identifying the drift direction of 1c/deg., luminance-modulated and contrast-modulated dynamic noise drifting at temporal frequencies of 0.5, 2 and 8Hz. Image size varied from 0.125 degrees to 16 degrees . The effects of increasing image size on thresholds for luminance-modulated noise were also compared to those for luminance-defined gratings. In all cases, performance improved as image size increased. The rate at which performance improved with increasing image size was similar for all stimuli employed although the slopes corresponding to the initial improvement were steeper for first-order compared to second-order motion. The image sizes at which performance for first-order motion asymptote were larger than for second-order motion. In addition, findings showed that the minimum image size required to support reliable identification of the direction of moving stimuli is greater for second-order than first-order motion. Thus, although first-order and second-order motion processing have a number of properties in common, the visual system's sensitivity to each type of motion as a function of image size is quite different.


Asunto(s)
Percepción de Movimiento/fisiología , Sensibilidad de Contraste , Humanos , Iluminación , Estimulación Luminosa/métodos , Umbral Sensorial , Detección de Señal Psicológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...